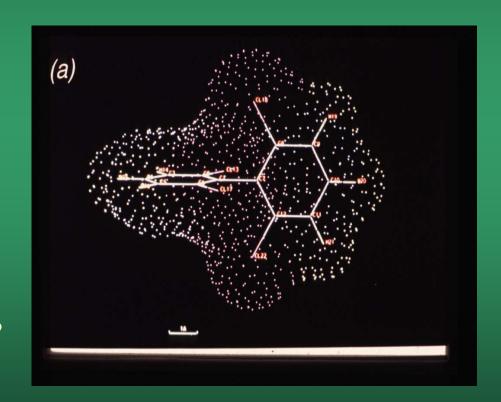


# Stage 1 TMDLs for PCBs for the Delaware Estuary


September 2003



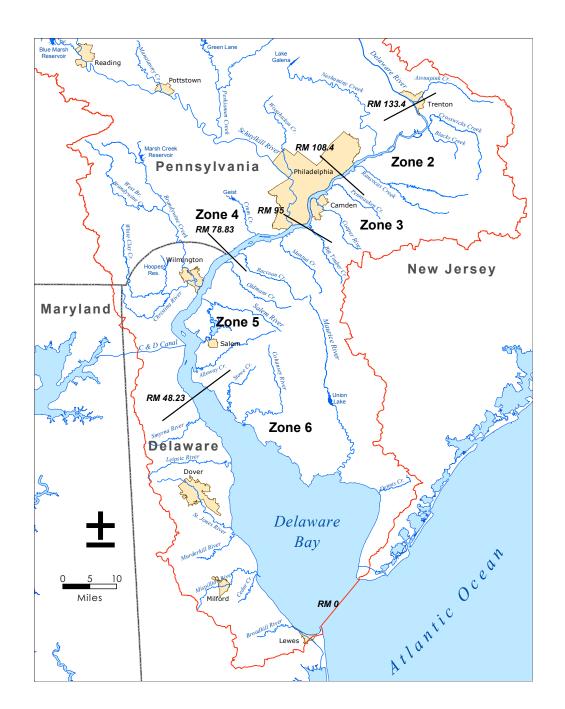


#### **PCBs**

- ☐ Man-made organic chemicals with a biphenyl base structure and 209 possible chlorine substitution patterns.
- ☐ Terminology: Aroclors, congeners, homologs.
- ☐ Properties: Hydrophobic, tend to accumulate in sediments and tissues.






#### Effects of PCBs

- ☐ Probable Human Carcinogen
- ☐ Developmental Effects
- ☐ Neurobehavioral Effects
- ☐ Reproductive Effects
- ☐ Immunosuppressant



#### History

- ☐ Clean Water Act of 1987.
- ☐ Estuary Toxics Management Program authorized in 1987 to address toxic pollutants in Zones 2 to 5. ☐
- ☐ Toxics Advisory Committee established in 1994.
- □ Water quality criteria for toxic pollutants for Zones 2 5 adopted in 1996.
- □ 1998 All three states list the estuary as impaired requiring the development of TMDLs.





# Zone Designations for the Delaware Estuary





#### History (cont.)

- □ Spring 2000 DRBC designated the lead agency to develop the TMDLs for PCBs by the end of 2003.
- ☐ Expert Panel established Sept. 2000.
- □ PCB Strategy developed by subcommittee of TAC March 2001.
- □ Staged approach to establishing TMDLs first discussed in Spring 2002.
- □ Modeling Consultant (Limno-Tech, Inc.) Spring 2002



#### History (cont.)

- ☐ Modeling Objectives
  - Gain understanding:
    - ✓ Determine PCB load-response relationships.
    - Determine principal controlling processes.
  - <sup>2</sup> Address management questions:
    - ✓ Determine PCB TMDL for each zone.
    - ✓ Allocate TMDLs among sources.
    - ✓ Assess the impact of load reduction strategies.

#### PCB Strategy Elements



- ☐ The strategy consists of nine elements:
  - 1 Determine the water quality targets for the TMDLs.
  - 2 Characterize PCB concentrations in the estuary ecosystem.
  - 3 Identify and quantify sources and pathways of PCBs to the estuary.
  - Determine the transport and fate of PCBs loads within the estuary.
  - **5** Establish TMDLs and allocations for sources to achieve water quality standards.



#### PCB Strategy Elements (cont.)

- 6 Develop an implementation plan to reduce PCBs entering the estuary.
- Increase environmental awareness of toxicity issues within the estuary.
- 8 Monitor long-term concentrations of PCBs in the air, water and sediments of the estuary.
- Monitor long-term concentrations and impacts to living resources of the estuary.



#### Stakeholder Participation

- □ The Commission's Toxic Advisory Committee forms the core of the stakeholder involvement in the PCB TMDL Process.
  - 13 members
  - Includes representatives from governmental agencies, regulated community, academia, environmental/watershed, agriculture, public health and fish & wildlife resource.
  - Provides formal recommendations to the Commission.



#### Stakeholder Participation

- Several coalitions of NPDES dischargers were also formed. One provided technical support in the development of the water quality model.
  - HydroQual, Inc. performed a decadal scale (74 year) consistency check of the model parameters that were determined during a 19 month short-term calibration period.
- □ A suite of public outreach meetings were held in the spring of 2001 to discuss the planned TMDL development process.



#### Stakeholder Participation

- ☐ Science Symposium October 2002
  - Sponsored by Delaware Estuary TMDL Coalition.
  - Objectives:
    - ✓ Summarize key findings from scientific studies.
    - ✓ Discuss how data/findings can be used in the model.
    - ✓ Identify additional data needs.
  - Focused on science and data, not on policy
- ☐ An Implementation Advisory Committee is planned to assist in PCB minimization efforts.

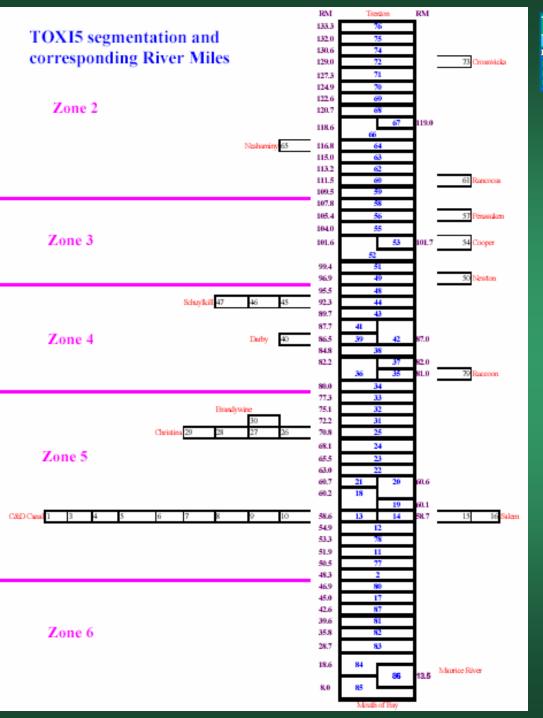
#### **Data Collection Efforts**



- □Under the guidance of the Expert Panel, a number of scientific investigations and data collection efforts were initiated including:
  - Sedimentological surveys.
  - Air deposition monitoring in PA and DE to complement the NJADN.
  - Surficial sediment survey.
  - Tributary monitoring.
  - Bioaccumulation studies.
  - ✓ Low level, congener-specific analyses of ambient water samples.

### Delaware River PCB Model (DELPCB)

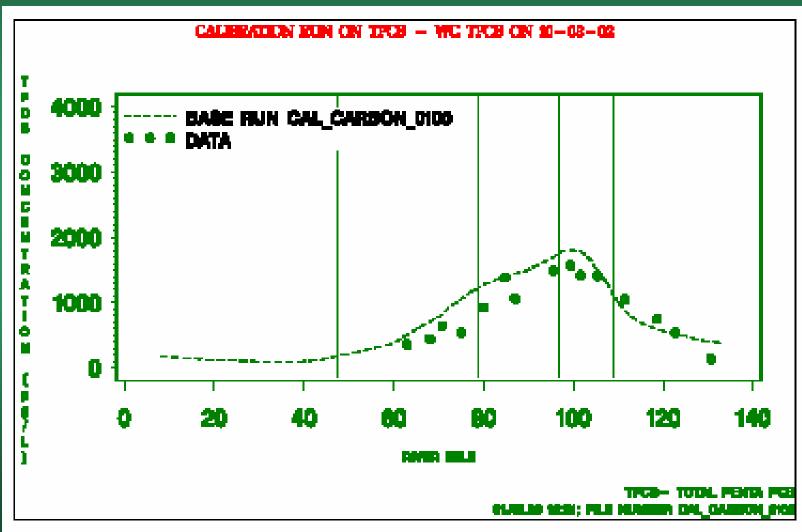



- ☐ Modified version of DYNHYD5/TOXI5
- ☐ EPA-supported and widely used for toxic chemical TMDLs and contaminated sediments.
- ☐ Model formulations/code extensively tested and assessed with observations at numerous sites.
- ☐ Builds upon modeling work at other sites:
  - ✓ Kalamazoo River RI/FS
  - ✓ New York Harbor CARP Model

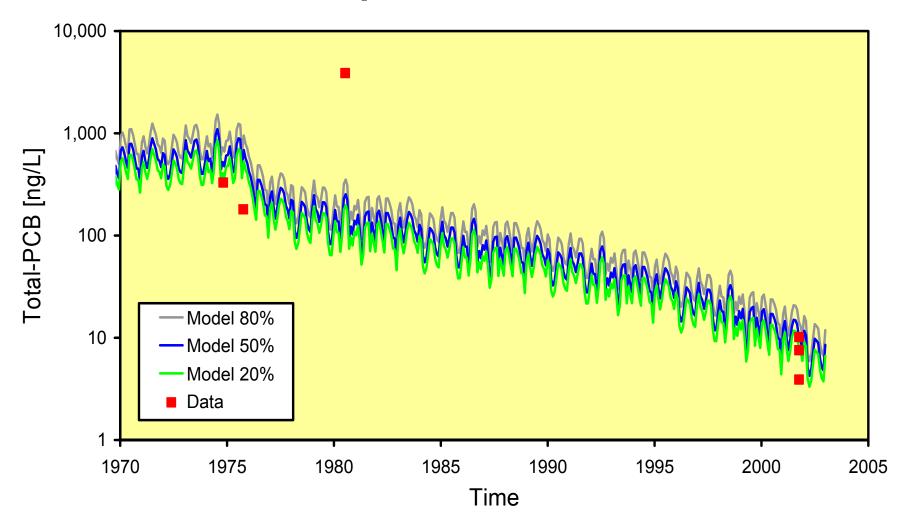
- ✓Green Bay Mass Balance Study
- ✓ Upper Hudson River RI/FS
- ✓ Fox River RI/FS

### Delaware River PCB Model (DELPCB)

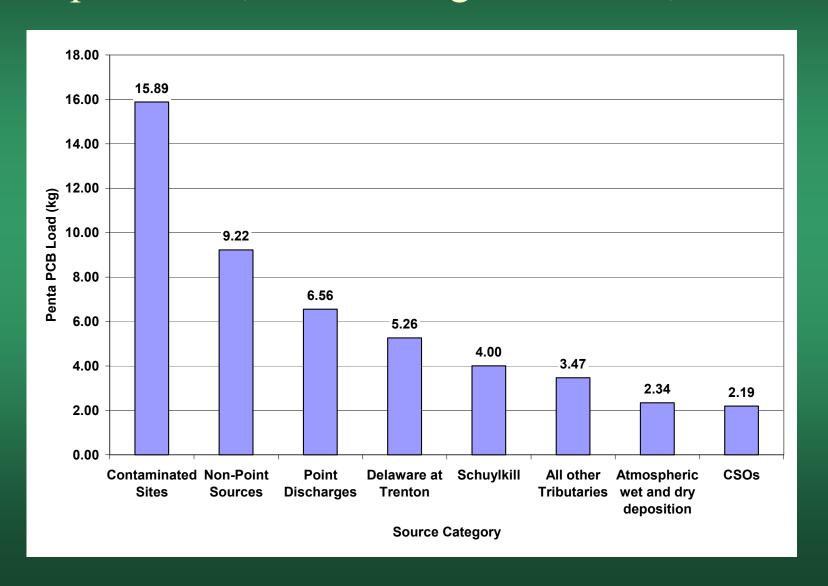



- ☐ Represents water column and sediments
- ☐ One-dimensional in longitudinal
  - ✓ 87 spatial segments
- ☐ Time-variable
- ☐ Hydrodynamics
  - ✓ Tidal heights
  - ✓ Chloride mass balance
- Organic carbon sorbent dynamics
  - ✓ Particulate carbon (biotic and detrital)
  - ✓ Dissolved organic carbon
- ☐ Penta PCB homolog






# Short-term Calibration for penta-CB






### Decadal Scale Calibration for penta-PCB



### Penta-PCB Load by Source Category September 1, 2001 through March 31, 2003



#### Key Findings



- ☐ The principal sources of PCB loadings are contaminated sites, non-point sources and point sources.
- ☐ Atmospheric gas phase absorption is a significant PCB source in the middle estuary.
- ☐ PCB loadings at head of tide (Trenton) have a significant influence in the tidal Delaware River.
- ☐ Water column PCBs are more strongly influenced by loadings than by sediments.

#### Summary points



- ☐ Model for PCBs is developed and calibrated.
- ☐ Model is scientifically credible.
- ☐ Collaboration with Delaware Estuary TMDL Coalition
  - ☐ Avoided adversarial process and a competing model
- ☐ Model being used to develop Stage 1 PCB TMDL, but Stage 2 is necessary to address uncertainties.
- ☐ Model can be extended to other contaminants and to other watersheds.



#### Establishing TMDLs

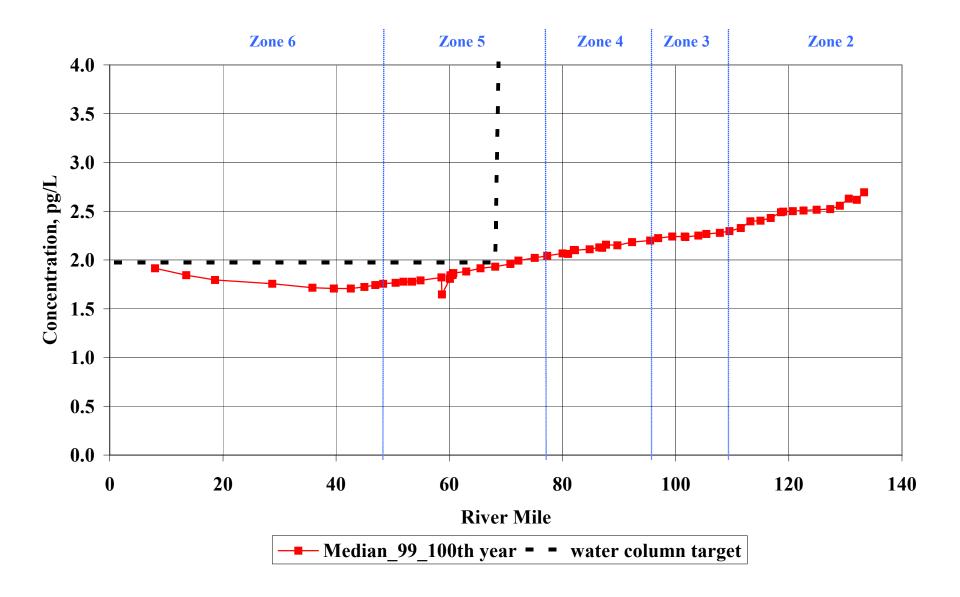
- of the PCB homologs that can enter the estuary and still meet the current water quality criteria. They are *projected loadings* from all sources based upon assumptions called design conditions.
- □ Since current concentrations of PCB homologs are 500 times higher than the water quality criteria, the TMDLs and associated individual WLAs and LAs will be proportionately less.



#### Background

Consistent with the resolution passed by the Commission in March 2003 regarding the new proposed criteria for Zones 2-5, and the letter from EPA Regions II and III dated April 16, 2003, the existing DRBC human health criteria will be the basis for the TMDLs.

|                        | <b>Zones 2 &amp; 3</b> | Zone 4 & Upper Zone 5 | Rest of Zone 5 |
|------------------------|------------------------|-----------------------|----------------|
| Existing DRBC Criteria | 44.4 pg/l              | 44.8 pg/l             | 7.9 pg/l       |




#### Background

□Since the current model is for pentachlorobiphenyls (5 chlorine homolog group), an equivalent penta-PCB water quality target must be used to determine the TMDLs.

|                                 | <b>Zones 2 &amp; 3</b> | Zone 4 &<br>Upper Zone 5 | Rest of Zone 5 |
|---------------------------------|------------------------|--------------------------|----------------|
| Equivalent Penta-<br>PCB Target | 11.1 pg/l              | 11.2 pg/l                | 1.975 pg/l     |

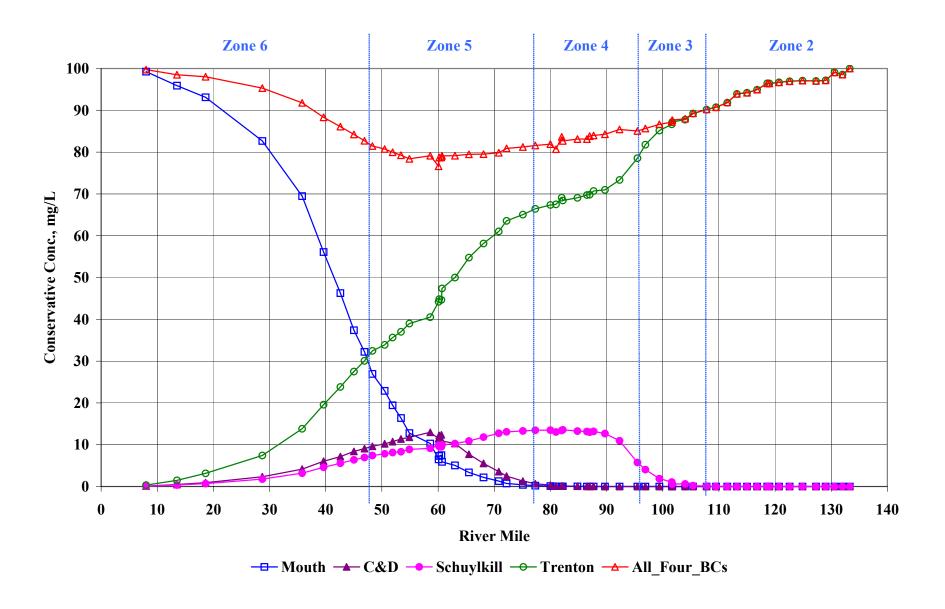
#### Penta-PCB Water Column Concentrations at TMDL Loads, 100 year simulation



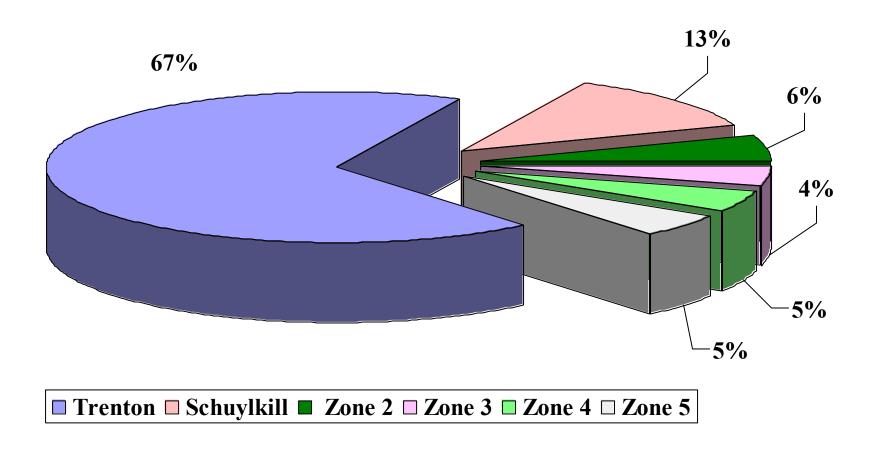
## Summary of Approach for Stage 1



- Utilize both a conservative chemical (chloride) and the penta-PCB models that cycle inputs from the period February 1, 2002 to January 31, 2003.
- □ Calculate annual median TMDL loadings to be consistent with both the model simulations and the 70 year exposure for human health criteria.


## Summary of Approach for Stage 1




- □TMDLs are calculated in a 4 step procedure:
  - Calculate the contribution factor for each of the estuary zones and two of the model boundaries to the critical location (RM 68.75).
  - Calculate the allowable loadings from each of these six sources that will meet the water quality target (1.975 pg/l). Include the assimilative capacity provided by net burial of PCBs to the sediments.

#### Spatial Plot: Relative Impact of the Boundary Conditions:

Median Values: BC = 100mg/l for Mouth of the Bay, C&D, Schuylkill, and/or Trenton

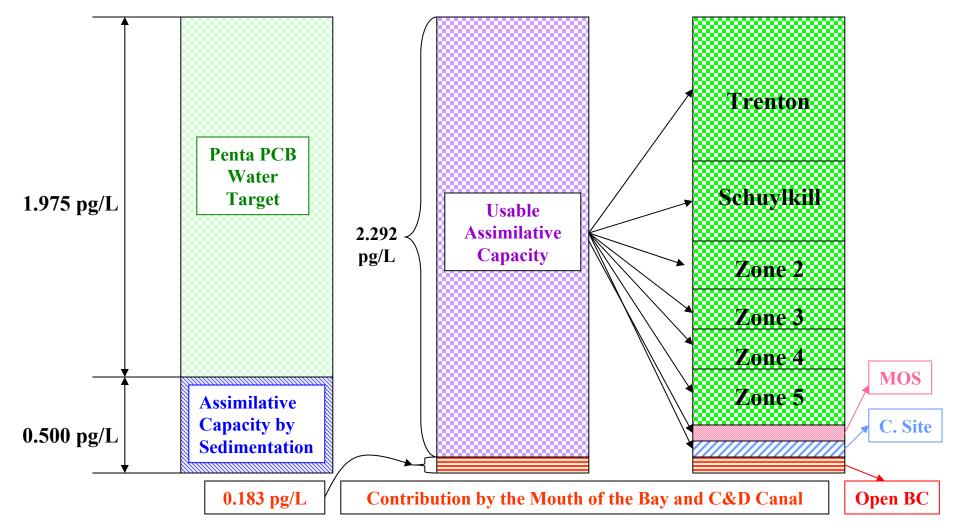


### Flow Distribution in Delaware Estuary





## Summary of Approach for Stage 1

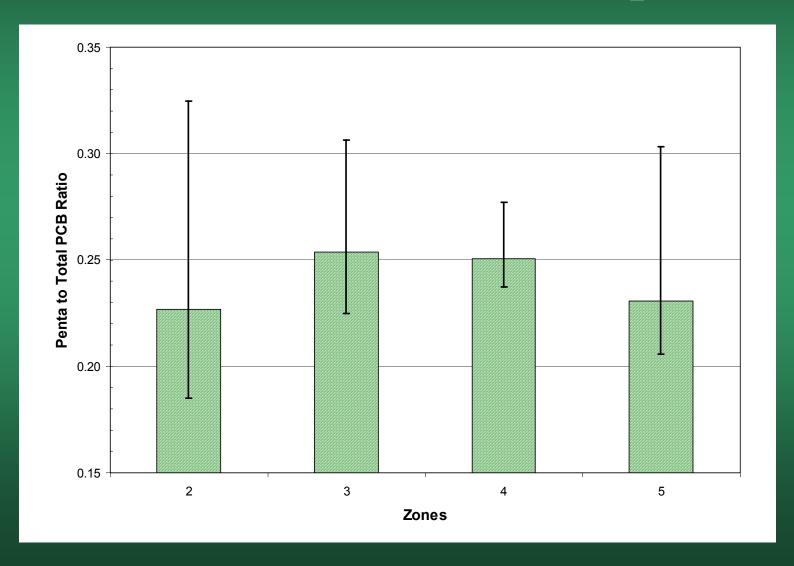



- Utilize the penta-PCB model to confirm that sediment concentrations have reached steady-state, and that the water quality target is met.
- Include the exchange of gas phase PCBs in the air with dissolved PCBs in the water, and utilize the penta-PCB model to confirm that the water quality target is met.

#### Summary of Approach for Stage 1

- □ Allocate 5% of each of the zone TMDLs to a margin of safety (MOS).
- □ Allocate to the contaminated sites category. ▶
- □Allocate the remainder of the zone TMDLs to a WLA portion and a LA portion based upon the current percentage contribution for each of the source categories to each zone during the period February 1, 2002 to January 31, 2003.

### Allocation of the Assimilative Capacity at the Critical Location

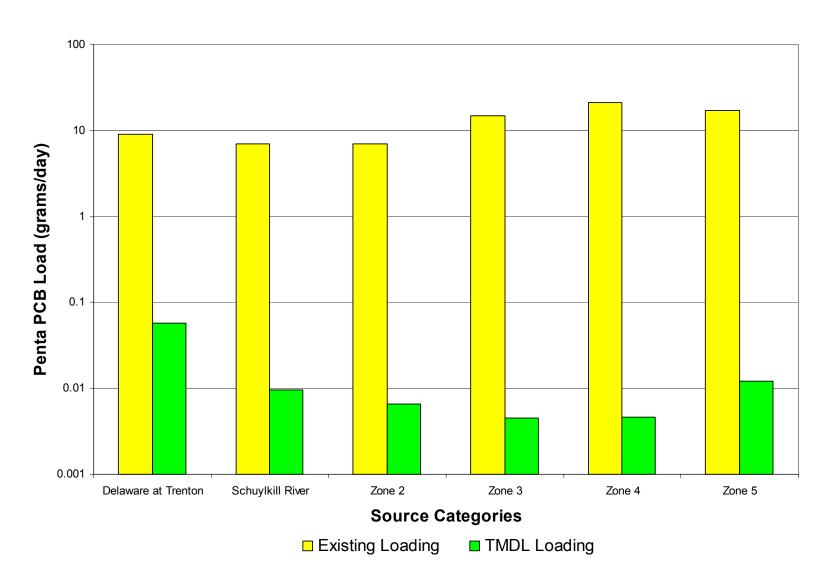





#### Summary of Approach for Stage 1

☐ Using the estuary-wide ratio of penta-PCBs to Total PCBs from ambient data collected in the Delaware Estuary, the zone-specific, penta-PCB TMDLs will be scaled up using a fixed ratio of 1:4 to calculate the TMDL.

### Ratio of Penta-PCBs to Total PCBs in Ambient Samples






### Stage 1 TMDLs for Total PCBs

| Estuary Zone | TMDL   | WLA    | LA     | MOS    |
|--------------|--------|--------|--------|--------|
|              | mg/day | mg/day | mg/day | mg/day |
| Zone 2       | 257.4  | 5.0    | 239.5  | 12.9   |
| Zone 3       | 17.8   | 4.9    | 12.0   | 0.9    |
| Zone 4       | 56.7   | 5.2    | 48.7   | 2.8    |
| Zone 5       | 48.1   | 13.3   | 32.4   | 2.4    |
| Sum          | 380.0  | 28.3   | 332.6  | 19.0   |

### Comparison of Current Penta-PCB Loads to TMDLs



#### Allocation of Zone TMDLs



- ☐ The current percentage contribution for:
  - Wasteload Allocations
  - Load Allocations

for each zone based upon the respective loadings during the period Feb. 1, 2002 to Jan. 31, 2003, and the designated margin of safety.

| Zone | WLA   | LA    |
|------|-------|-------|
| 2    | 8.4%  | 91.6% |
| 3    | 29.1% | 70.9% |
| 4    | 17.6% | 82.4% |
| 5    | 29.0% | 71.0% |

## Approach for Establishing Stage 2 TMDLs



- □ The approach for establishing Stage 2 TMDLs is expected to be different than that used in Stage 1.
- □Some of the reasons for this are:
  - The proposed human health criteria for total PCBs does not produce a sharp transition between zones.
  - 2 An alternative allocation procedure for both the aggregate WLAs and LAs, and the individual WLAs and LAs that is more equitable will be needed.

# Approach for Establishing Stage 2 TMDLs



- 3 TMDLs for total PCBs for each zone will be the sum of the TMDLs for each homolog without extrapolation.
- Alternative source reduction strategies that result from either the PCB Minimization Plans required in Stage 1 or the efforts of the PCB Implementation Committee will need to be implemented in the apportioning of the zone TMDLs, where appropriate.

#### Summary



- ☐ Four documents have been prepared for use by the U.S. EPA in establishing the TMDLs:
  - Stage 1 TMDL Support Document.
  - <sup>2</sup> Hydrodynamic Model for the Delaware Estuary.
  - <sup>3</sup> Water Quality Model for penta-PCBs for the Delaware Estuary.
  - 4 Calibration of the Water Quality Model for penta-PCBs.
- ☐ These documents are available on the DRBC website: www.drbc.net

#### Summary (cont.)



- □ A public hearing is scheduled for Thursday October 16, 2003 at Independence Visitor Center, One North Independence Mall West in Philadelphia, PA from 7:00 to 9:00 PM.
- The public comment period closes at on Tuesday October 21, 2000. Comments shall be submitted to Lenka Berlin, Office of Watersheds (3WP10), U.S. EPA, 1650 Arch St., Philadelphia, PA 19103-2029. Email address: berlin.lenka@epamail.epa.gov.